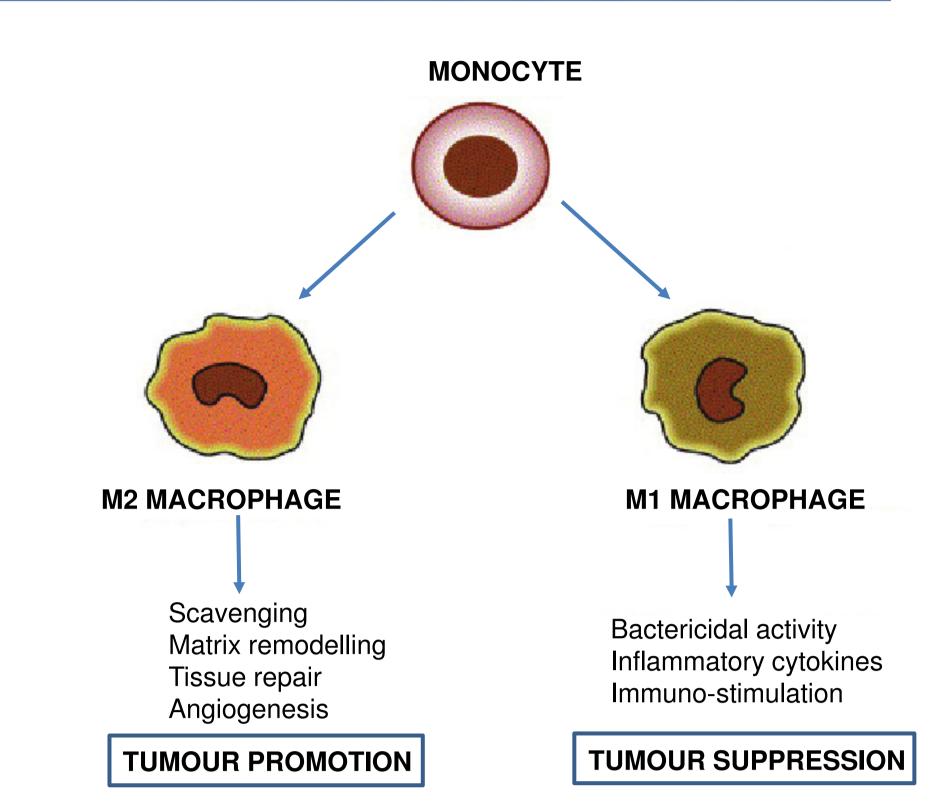
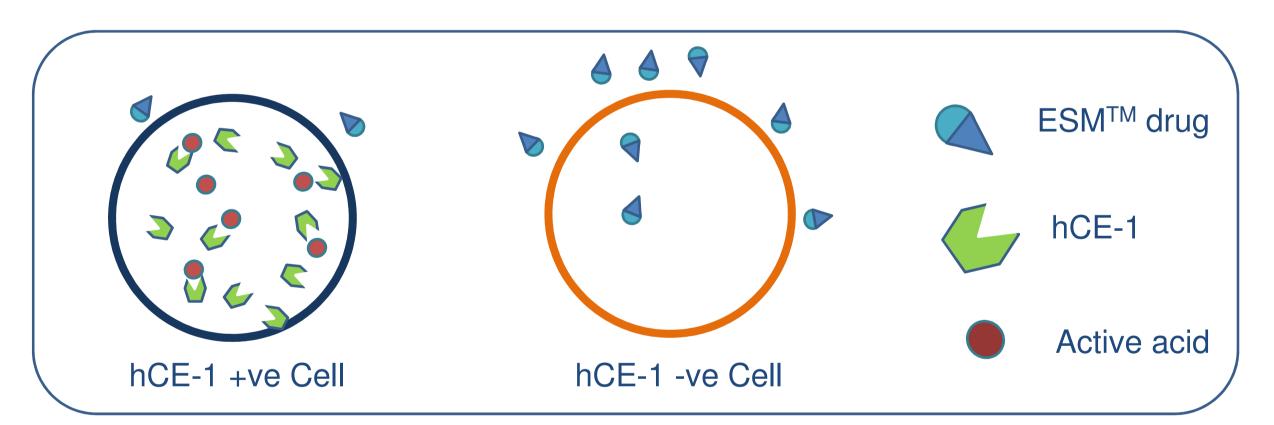
MPL-7097, an ESMTM p38 MAPK inhibitor

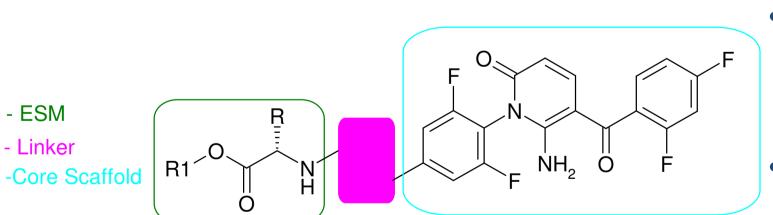
¹N.Winfield, ¹S.Brookes, ¹J.Calleja, ¹K.Chapman, ¹D.Hannah, ¹M.Jackman, ¹A.MacNair, ¹G.Newton, ¹N.Piton. ¹P.Skone, ¹C.Tebbutt, ²D.Moffat, ²M.Perry



¹Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL ²Macrophage Pharma Limited, Windsor, UK

Introduction

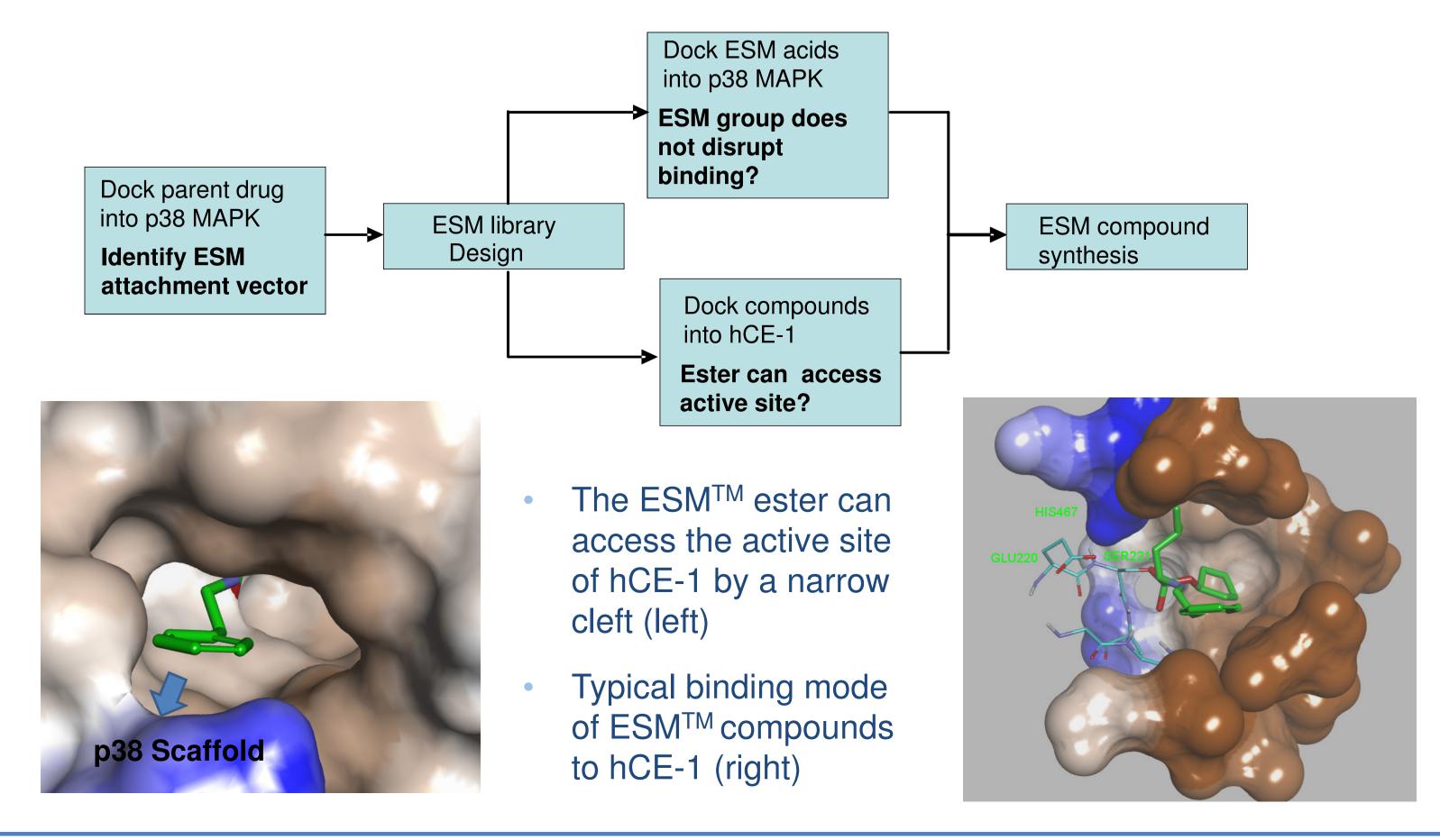

- Tumour-associated macrophages (TAMs) contribute significantly to enhanced malignancy in multiple cancers by generating an immunosuppressive tumour microenvironment through production of cytokines such as IL-10.^{1,2}
- Polarisation of these immunosuppressive M2 macrophages towards a proinflammatory M1 phenotype is capable of activating an effective anti-tumour immune response.³



- p38 MAPK has been shown to play a role in polarising macrophages towards an immunosuppressive M2 phenotype, however, it also has a pro-inflammatory effect in other immune cells such as T-cells.⁴
- Macrophage Pharma's Esterase Motif TechnologyTM (ESMTM) targets myelomonocytic cells whilst sparing other immune cells.⁵ The application of this technology to p38 MAPK to generate a series of potent ESMTM p38 inhibitors that selectively target myelomonocytic cells will be described.

Esterase Sensitive MotifTM Technology

- Human carboxylesterase, hCE-1 expression is largely restricted to cells of the monocyte lineage; monocytes, macrophages and dendritic cells
- Other human carboxylesterases, hCE-2/3 are ubiquitously expressed
- The ESMTM technology uses esters that are selectively hydrolysed intracellularly by hCE-1
- Accumulation of the pharmacologically active acid occurs in hCE-1 positive cells, since the acid can not readily diffuse out of the cell

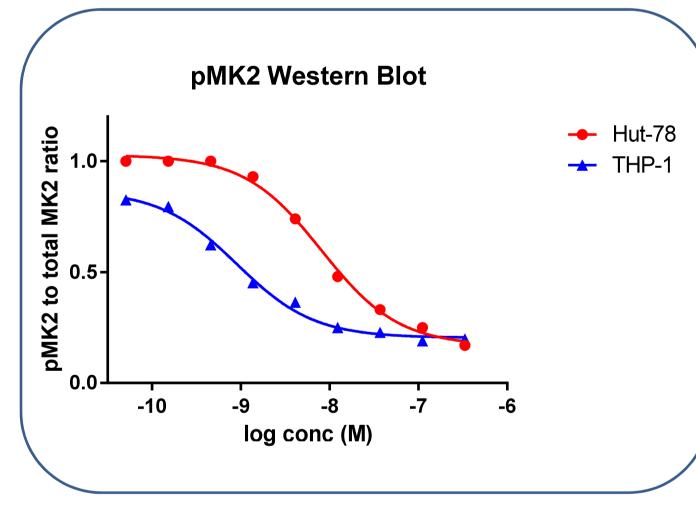


- Macrophage Pharma have developed a p38 MAPK ESMTM inhibitor, MPL-5821
- The key structural elements of MPL-5821 are shown in the diagram (left)

Design of ESMTM p38 MAPK Inhibitors

- With the successful identification of **MPL-5821** as a lead molecule, Macrophage Pharma wishes to investigate the application of their ESMTM technology to other p38 MAPK inhibitor classes
- Alternative scaffolds were investigated and ESMTM compounds designed

The rate of hydrolysis by hCE-1 can be modulated by varying the ESMTM


2C para 2C meta	34 17	892 1867
	17	1867
10 Dava		1007
1C Para	8	2367
2C para	>571	
2C para	120	194
2C para	<5	3958
2C para	278	21
2C para	7	
	2C para 2C para	2C para <5 2C para 278

- hCE-1 is also expressed in the liver: therefore, an intermediate rate of hydrolysis was required so that enough ester could avoid first pass metabolism
- A variety of different esterase sensitive motifsTM were assessed to determine the effect the changes had on hydrolysis rate and cell accumulation (select examples shown in the table)
- THP-1 cells (hCE-1 +ve)
 were used for the cell
 accumulation assay and
 the intracellular
 concentration was
 determined by mass
 spectroscopy

MPL-7097

Assay	MPL-7097
p38α MAPK IC ₅₀ (nM)	2
THP-1 TNFα IC ₅₀ (nM)	10
Whole blood TNFα IC ₅₀ (nM)	4
Western blot THP-1 (nM)	9
Western blot HUT-78 (nM)	107

- MPL-7097 was identified as a potent p38 MAPK inhibitor with good cell and whole blood potency.
- MPL-7097 shows selectivity for hCE-1 +ve cells (THP-1) over hCE-1 –ve cells (HUT-78)
- The acid generated from MPL-7097 accumulates to a greater extent in hCE-1 positive cells than in hCE-1 negative cells

60			active acid of MPL-70
50			
30			—Concentration in THP-1 cells (μΜ)
10			Concentration in HUT-78 cells (μΜ)
0	ı		 (p)

ADME/PhysChem	MPL-7097
MW	547
logD _{7.4}	3.7
Solubility (pH 7.4 PBS 24 h, μM)	0.3
Human S9 Clint (μL/min/mg protein)	37
CYP3A4 inhibition (μM)	>10
hERG inhibition (μM)	> 10

- MPL-7097 shows good S9 stability.
- MPL-7097 has an excellent ADME profile with no inhibition > 50% at 10 micromolar in CYP3A4 and hERG assays.
- MPL-7097 is selective over other kinases (only 12/356 were inhibited by >50% at 10 μ M, data not shown)

Summary

- MPL-7097 was identified as a potent p38 MAPK ESM[™] inhibitor
- Macrophage selective drug delivery through application of the ESM[™] technology differentiates molecules such as MPL-7097 and MPL-5821 from conventional nontargeted p38 MAPK inhibitors

Services/Contact

Domainex is a fully integrated drug discovery CRO based in the UK. If you would like to learn more about applying our drug-discovery platform to your targets, please contact: tom.mander@domainex.co.uk

www.domainex.co.uk

- 1) Biswas *et al*; Semin.Immunopathol; **2013**, 35, 585-600
- 2) Brown *et a*l; Tissue Antigens, **2004**, 64, 3, 215
 3) Verreck *et al*; **2004**, PNAS, 101, 13, 4560-4565
- 4) Yang *et al*; **2016**, Scientific Reports, 1-12 5) Needham *et al*; J.Pharmacol.Exp.Ther., **2011**, 339, 132-142

