

Multiplexed in vitro models of primary human B cell activation

White Paper

domainex.co.uk

Introduction

B cells are a class of lymphocyte that are important in the adaptive immune response, offering protection against pathogens¹. They secrete antibodies and are also professional antigen-presenting cells. B cell pathology is central to many autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and type-1 diabetes. Additionally, a number of cancers are caused by B cell malignancy. Therefore, B cells are important drug discovery targets; for example, the anti-CD20 antibody rituximab is clinically effective against many B cell related pathologies^{1,2}. Robust assay models for B cell function are crucial to further exploit this therapeutic potential.

At Domainex, we have established *in* vitro assay systems to multiplex several B cell maturation readouts using primary human B cells³. Activation with the TLR9 agonist, ODN2006, causes increased proliferation and secretion of the maturation markers; IL-6, IL-8 and IgG. Pharmacological inhibition of this effect has been clearly demonstrated with a known phosphoinositide 3-kinase (PI3K) inhibitor.

Methodology

Cryopreserved human peripheral B cells (StemCell Technologies) were revived and seeded in polyornithinecoated 96 well plates. Cells were pre-treated with test compound before stimulation with the TLR9 agonist, ODN2006. Cell confluency was measured kinetically using IncuCyte S3 imaging and supernatants were sampled for quantification of IL-6, IL-8 and IgG by AlphaLISA in parallel at varied timepoints.

Example Data

B cell proliferation was measured as confluency changes using InuCyte kinetic imaging (Figure 1). Compared to unstimulated cells, ODN2006 caused an increase in confluency over 8 days. This proliferation effect was inhibited completely by dasatinib.

Similarly, IL-6, IL-8 and IgG secretion were markedly increased by TLR9 stimulation, an effect that was strongly inhibited by dasatinib (Figure 2). Therefore, TLR9-mediated activation of primary B cells can be both quantified and pharmacologically inhibited with a small molecule drug.

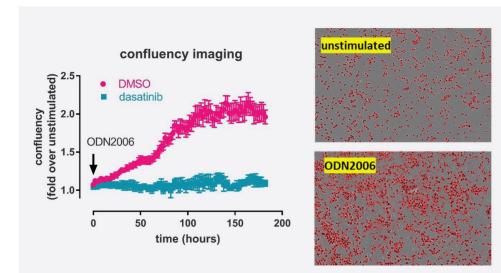
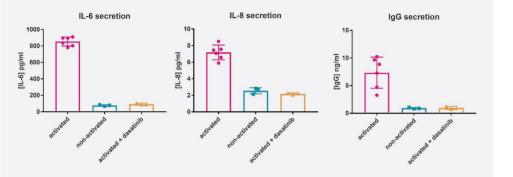
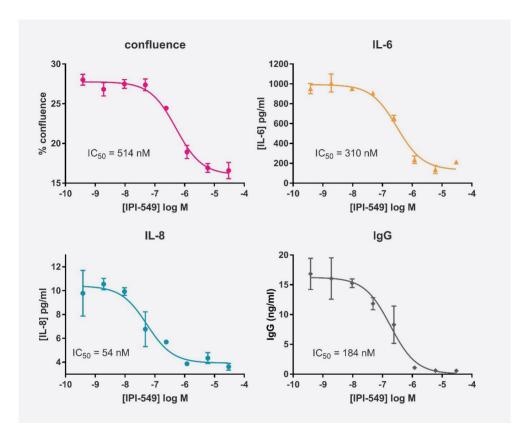




Figure 1: Lefthand panel: Kinetic confluency changes in B cells after ODN2006 stimulation (single dose at T=0). Righthand panel: Cell images with confluence mask superimposed in red after 180 hours stimulation with ODN2006

Figure 2: AlphaLISA quantification of IL-6, IL-8 and IgG secretion from B cells

Concentration-response analysis of the PI3K gamma selective inhibitor, IPI-549, showed potent and near complete inhibition in all four readouts (Figure 3) with IC_{50} values between 50 and 500 nM. This is consistent with the known role of this kinase in B cell biology⁴.

Figure 3: Concentrationresponse curves of IPI-549 against the four B cell activation readouts (with IC₅₀ values shown)

References

- B-cell targeted therapeutics in clinical development. Blüml, S., McKeever, K., Ettinger, R., Smolen, J. and Herbst, R. Arthritis Research and Therapy, 2013, vol. 15 S4.
- Drug discovery and therapeutic delivery for the treatment of B and T cell tumors. Stephenson, R. & Singh, A. Advanced Drug Delivery Reviews vol., 2017, 114, 285–300.
- Comparative in Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines. Kristien Van Belle, Jean Herman, Louis Boon, Mark Waer, Ben Sprangers and Thierry Louat. Journal of Immunology Research, 2016.
- Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cy pathways. Marshall, A. J., Niiro, H., Yun, T. J. and Clark, E. A. Immunological Reviews, 2000, vol. 176 30–46.

domainex.co.uk

Enrich your medicines pipeline

Providing drug discovery research brainpower

- Tailored multidisciplinary expertise
 - Forming dynamic relationships
 - Innovative outcomes for our partners

FEATURED SERVICE **Assay Biology**

Assays built for full compound profiling

- Biochemical
 - Intracellular and membrane targets
 - Potency, selectivity & MOA measurements
- Biophysical:
 - Full suite (MST, GCI/SPR, DSF/nanoDSF, NMR, X-ray crystallography)
- Affinity, kinetic & structural determinations Cellular
 - Cell lines and primary cells
 - Signalling & reporter-based assays
 - On and off target assessments

Based in the Cambridge UK Biocluster

Established in 2001

Contact us today!

lin

enquiries@domainex.co.uk